32,112 research outputs found

    The influence of dust properties on the mass loss in pulsating AGB stars

    Get PDF
    We are currently studying carbon based dust types of relevance for carbon-rich AGB stars, to obtain a better understanding of the influence of the optical and chemical properties of the grains on the mass loss of the star. An investigation of the complex interplay between hydrodynamics,radiative transfer and chemistry has to be based on a better knowledge of the micro-physics of the relevant dust species.Comment: 4 pages, 2 figures. Proceedings for IAU Colloquium 185 "Radial and Nonradial Pulsations as Probes of Stellar Physics

    Dust grain properties in atmospheres of AGB stars

    Get PDF
    We present self-consistent dynamical models for dust driven winds of carbon-rich AGB stars. The models are based on the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation. We investigate in detail how the wind properties of the models are influenced by the micro-physical properties of the dust grains that enter as parameters. The models are now at a level where it is necessary to be quantitatively consistent when choosing the dust properties that enters as input into the models. At our current level of sophistication the choice of dust parameters is significant for the derived outflow velocity, the degree of condensation and the estimated mass loss rates of the models. In the transition between models with and without mass-loss the choice ofmicro-physical parameters turns out to be very significant for whether a particular set of stellar parameters will give rise to a dust-driven mass loss or not.Comment: 10 pages, 3 figures. To appear in: Modelling of Stellar Atmospheres, N.E. Piskunov, W.W. Weiss, D.F. Gray (eds.), IAU Symposium Vol. xxx. Proceedings for the IAU Symposium 210, Uppsala, June 200

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio Ξ\theta, then for any 0<Ï”<1/20<\epsilon<1/2, it finds a set Sâ€ČS' of volume at most 2k1+Ï”2k^{1+\epsilon} and bipartiteness ratio at most 4Ξ/Ï”4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(Ï”2ξ−2k1+Ï”ln⁥3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals

    Full text link
    Motivated by recent results of NNth order muffin-tin orbital (NMTO) implementation of the density functional theory (DFT), we re-examine low-temperature ground-state properties of the anti-ferromagnetic insulating phase of vanadium sesquioxide V2_2O3_3. The hopping matrix elements obtained by the NMTO-downfolding procedure differ significantly from those previously obtained in electronic structure calculations and imply that the in-plane hopping integrals are as important as the out-of-plane ones. We use the NMTO hopping matrix elements as input and perform a variational study of the ground state. We show that the formation of stable molecules throughout the crystal is not favorable in this case and that the experimentally observed magnetic structure can still be obtained in the atomic variational regime. However the resulting ground state (two t2gt_{2g} electrons occupying the degenerate ege_g doublet) is in contrast with many well established experimental observations. We discuss the implications of this finding in the light of the non-local electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure

    GRB Energetics and the GRB Hubble Diagram: Promises and Limitations

    Full text link
    We present a complete sample of 29 GRBs for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically-corrected gamma-ray energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this value is a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams, that the current sample cannot place meaningful constraints upon the fundamental parameters of the Universe. Indeed for GRBs to ever be useful in cosmographic measurements we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically-derived and physically ill-understood distance indicators. Second, a more homogeneous set should be constructed by culling sub-classes from the larger sample. These sub-classes, though now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous by factors of at least 10 and exhibit a rapid fading at early times. About 10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3 Postscript figure

    Augmented space recursion for partially disordered systems

    Full text link
    Off-stoichiometric alloys exhibit partial disorder, in the sense that only some of the sublattices of the stoichiometric ordered alloy become disordered. This paper puts forward a generalization of the augmented space recursion (ASR) (introduced earlier by one of us (Mookerjee et al 1997(*))) for systems with many atoms per unit cell. In order to justify the convergence properties of ASR we have studied the convergence of various moments of local density of states and other physical quantities like Fermi energy and band energy. We have also looked at the convergence of the magnetic moment of Ni, which is very sensitive to numerical approximations towards the k-space value 0.6 ÎŒB\mu_{B} with the number of recursion steps prior to termination.Comment: Latex 2e, 21 Pages, 13 Figures, iopb style file attache

    Forward jets and forward WW-boson production at hadron colliders

    Get PDF
    In this talk we give a short review of forward jets and forward WW-boson production at hadron colliders, in view of the extraction of footprints of BFKL physics. We argue that at Tevatron energies, dijet production at large rapidity intervals is still subasymptotic with respect to the BFKL regime, thus the cross section is strongly dependent on the various cuts applied in the experimental setup. In addition, the choice of equal transverse momentum cuts on the tagging jets makes the cross section dependent on large logarithms of non-BFKL origin, and thus may spoil the BFKL analysis. For vector boson production in association with two jets, we argue that the configurations that are kinematically favoured tend to have the vector boson forward in rapidity. Thus W+2W + 2 jet production lends itself naturally to extensions to the high-energy limit.Comment: LaTeX, JHEP style, 10 pages, 3 figures. Based on a talk at EPS2001, Budapest, Hungar

    Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    Full text link
    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consistent relation is present during simple fixation. Finally, we find organized LFP activity in a 15--25 Hz frequency band that may be related to movement execution and preparatory aspects of the task. Neuronal activity could be used to control a neural prosthesis but SU activity can be hard to isolate with cortical implants. As the LFP is easier to acquire than SU activity, our finding of rich temporal structure in LFP activity related to movement planning and execution may accelerate the development of this medical application.Comment: Originally submitted to the neuro-sys archive which was never publicly announced (was 0005002
    • 

    corecore